
AN INTERACTIVE GRAPHICAL TRACE-DRIVEN
SIMULATOR FOR TEACHING BRANCH

PREDICTION IN COMPUTER ARCHITECTURE

Ciprian Radu1, Horia Calborean1, Adrian Crapciu1, Arpad Gellert1, Adrian Florea1

1 “Lucian Blaga” University of Sibiu, Computer Science Department, Emil Cioran Street, No.
4, 550025 Sibiu, Romania,

{radu_ciprianro, horia.calborean, adrian.crapciu}@yahoo.com, adrian.florea@ulbsibiu.ro

Abstract

In modern superscalar microarchitectures that speculatively execute a great quantity of code,
without performing branch prediction, it won’t be possible to aggressively exploit program’s
instruction level parallelism. Both the architectural and technological complexity of current
processors emphasizes the negative impact on performance due to every branch
missprediction. Due to this importance, branch prediction becomes a core topic in Computer
Architecture curricula. The fast development of computer science and information
technology domains, and of computer architecture especially, have determined that
many software tools used not far ago in research, to be enhanced with an interactive
graphical interface and to be taught in Introductory Computer Organization respectively
Computer Architecture courses. The lack of simulators dedicated to branch prediction used
in didactical purposes despite of plenty used in research goals, represents the starting point of
this paper. The main aim of this work consists in identifying the difficult-to-predict branches,
quantifying them at benchmarks level and finding the relevant information to reduce their
numbers. Finally, we evaluate the impact of these branches on three commonly used
prediction context (local, global and path) and their corresponding predictors ranging from
classical two-level predictors to present-day predictors (neural – Simple Perceptron and Fast
Path-based Perceptron). The developed ABPS simulator provides a wide variety of
configuration options. Beside statistics related to the number of difficult-to-predict branches,
the simulator generates graphical results illustrating the influence of different simulation
parameters (number of entries in prediction table, history length, etc.) on prediction accuracy,
resources usage degree, etc., for every implemented predictor.

Keywords: Simulation, Advanced Microarchitectures, Branch Predictors, Benchmarks.

Presenting Author’s biography
ADRIAN FLOREA obtained his MSE in 1997 and his PhD in (Computer Science) in
2005 from the ‘Politehnica’ University of Bucharest, Romania. He is a lecturer of
Computer Science and Engineering at the ‘Lucian Blaga’ University of Sibiu, Romania.
Adrian is an active researcher in the fields of High Performance Processor Design and
Dynamic Branch Prediction. He published over 19 scientifically papers about Computer
Architecture in some prestigious journals (ISI-INSPEC) and international conferences.
He got "Tudor Tanasescu" Romanian Academy Award 2005, for the book entitled
"Microarchitectures simulation and optimization" (in Romanian). His Web-page could
be found at http://webspace.ulbsibiu.ro/adrian.florea/html/ .

1 Introduction
Since the simulation community – usually very broad
– is not necessarily familiar with branch prediction
problem, we present a short introduction of this
domain. The computers have made important
progresses and microprocessors (CPUs) are the main
responsible for this. Thus, it is a stringent necessity
to improve the current computer architecture
performances both quantitative and qualitative
viewpoint. The technological trends refers to
increasing integration degree of transistors on chip,
increasing the processors frequency, reducing the
main memory access time, reducing the hardware
implementation cost at same power consumption or
same memory size, etc. The architectural tendencies
pursuit exploiting and increasing instruction level
parallelism both through static and dynamic
techniques, in order to overcome the control-flow and
data-flow bottleneck. Both the architectural complexity
of current processors (deep pipeline structures – 20 at
INTEL Pentium4 and wide width instructions issue) and
technological complexity (higher processing frequency –
greater than 3.3 GHz at same processor) emphasizing the
negative impact on performance due to every branch
missprediction [11]. Branch instructions activate at
control-flow level generating performance loss by
unknowing in the instruction fetch stage the direction
and the target of branch. Thus, the modern
architectures should incorporate very efficacious
prediction schemes.

One of the first approaches in hardware branch
prediction consists in Branch Target Buffer (BTB)
structures [6]. BTB is a small, associative memory,
integrated on chip that retains the addresses of
recently executed branches, their targets and
optionally other information (e.g. target opcode). Due
to some intrinsic limitations, BTB's accuracies are
limited on some benchmarks having unpropitious
characteristics (e.g. correlated branches). Among first
commercial processors that implement BTB structures
are Intel Pentium [18], AMD K5 and DEC Alpha
21064.

In order to improve BTB's efficiency, Yeh and Patt
(1992) generalized it through a new approach called
Two Level Adaptive Branch Prediction. According to
[16], the Two Level Adaptive Branch Prediction uses
two distinct levels of branch history information to
make predictions. The first level consists in the
History Register (HR) that contains the last k branches
encountered (taken / not taken) or the last k
occurrences of the same branch instruction. The
second level consists in the branch behavior of the last
occurrences of the specific pattern of these branches.
A Pattern History Table (PHT) that contains
essentially the branch prediction automaton (usually 2
- bit saturating counters) implements it. HR shifts left
with a binary position when updated according to the
actual branch behavior (taken=1/ not taken=0). There

is a corresponding entry in the PHT for each of the 2k
HR's patterns. Intel Pentium Pro, Pentium II [18] and
AMD K7 [3] are examples of processors that
incorporate a two-level predictor.

In order to obtain a greater prediction accuracy the
nowadays processors use hybrid prediction structures,
combining two (or more) tables, one correlated with
local history of the predicted branch (PAg predictor)
and other correlated with global history of the
predicted branch (GAg predictor). The selection
between two predictions is made using a confidence
table that records the dynamic behavior of each
predictor. The processor Alpha 21264 embeds a
hybrid predictor having a local predictor with 1024
entries (keeping a local history of 10 bits) and a global
predictor with 4096 entries reaching to almost 95% of
prediction accuracy [4].

The most accurate single-component branch predictors
in the literature are neural branch predictors [4, 5].
Their main advantages consist in possibility of using
longer correlation information at linear cost. The
Perceptron predictor – the simplest neural branch
predictor – keeps a table of weights vectors (small
integers that are learned through the perceptron
learning rule) [4]. As in global two-level adaptive
branch prediction, a shift register records a global
history of outcomes of conditional branches, recording
true for taken, or false for not taken. To predict a
branch outcome, a weights vector is selected by
indexing the table with the branch address modulo the
number of weights vectors. The dot product of the
selected vector and the global history register is
computed, where true in the history represents 1 and
false represents -1. If the dot product is at least 0, then
the branch is predicted taken, otherwise it is predicted
not taken. Once the perceptron output has been
computed, the training algorithm starts: it increments
the i-th correlation weight when the branch outcome
agrees with the i-th bit from global branch history
shift register and decrements the weight otherwise.
Unfortunately, the high latency of the perceptron
predictor and impossibility to predict the linearly
inseparable branches makes it impractical yet for
hardware implementation. In order to reduce the
prediction latency, the Fast Path-based Perceptron [5]
chooses its weights for generating a prediction
according to the current branch’s path, rather than
according to the branch’s PC and history register. The
prediction latency is hided due to the speculative
calculation of the perceptron’s output. However, Intel
includes the perceptron predictor in one of its IA-64
simulators for researching future microarchitectures
[4].

Vintan et al. proved that a branch in a certain dynamic
context is difficult predictable if it is unbiased and the
outcomes are shuffled [14]. In other words, a dynamic
branch instruction is unpredictable with a given
prediction information if it is unbiased in the
considered dynamic context and the behavior in that

certain context cannot be modeled through Markov
stochastic processes of any order. Based on Vintan’s
methodology, in this paper we identify unbiased
branches by repeating various and different length
prediction contexts. We show how it is reduced the
frequency of unbiased when extend the length of
context information. Also, we determine the impact of
unbiased branch on prediction accuracy and
processing performance.

2 Simulation Methodology. Benchmarks
After more than two decades, the researcher from
computer science domain got the conclusion that
simulators have become an integral part of the
computer architecture research and design process
[17]. Their most important advantages, comparing
with real processors, are low implementation cost,
development time, flexibility and extensibility
allowing the architects to quickly evaluate the
performance of a wide range of architectures and to
quantify the efficacy of every enhancement. Besides
its importance proved in computer architecture
research field, in the latest time, simulators have been
extensively employed as a valuable pedagogical tool
as they enable students to visualize how
microarchitecture components work and interacts each
other. For example, at last important Workshop on
Computer Architecture Education held in conjunction
with the 33rd International Symposium on Computer
Architecture (ISCA06 – the best conference in
computer architecture domain in the world), two
papers aim at fundamental topics of computer
architecture curricula: processor – cache interface in a
RISC architecture (MIPS) [8] and power and
performance analysis in superscalar out-of-order
architecture [10].

In this work we implement the ABPS (Advanced
Branch Prediction Simulator), an interactive graphical
trace-driven simulator for teaching branch prediction.
The ABPS simulator is currently used in
undergraduate and graduate courses / laboratories in
(Advanced) Computer Architecture at “Lucian Blaga”
University of Sibiu. The simulator code is open source
and can be found at
http://webspace.ulbsibiu.ro/adrian.florea/html/simulat
oare/simulatoare.htm.

Related to first part of our investigation – identifying
the difficult-to-predict branches and quantifying them
on testing programs, we used the traces obtained
based on the eight C Stanford integer benchmarks,
designed by Professor John Hennessy (Stanford
University), to be computationally intensive and
representative of non - numeric code while at the same
time being compact. All these benchmarks were
compiled by the HSA gnu C compiler, which targets
the HSA (Hatfield Superscalar Architecture)
instruction set. A dedicated HSA simulator [13] that
generates the corresponding traces simulated the
resulted HSA object code. These helpful tools were

developed at the University of Hertfordshire, Research
Group of Computer Architecture, UK. The average
instruction number is about 273.000 and the average
percentage of total instructions that are branches is
about 18%, with about 76% of them being taken.
Derived from HSA traces, special traces were
obtained, containing exclusively all the processed
branches. Each branch belonging to these modified
HSA traces is stored in the following format: branch's
type, the address of the branch (PC – program
counter) and its target address. Some of these
benchmarks are well known as very difficult to be
predicted. For example, as Mudge et al. proved very
clearly [7], 75% accuracy could be an ultimate limit
on "quick-sort" benchmark.

Following our aims, we developed an original
dedicated trace-driven simulator that uses the above-
mentioned traces. The most important input
parameters for this simulator are the local/global
history length (HRl bits (l) / HRg bits (k)), number of
entries in prediction table, the type of predictor, the
simulated benchmark. As outputs, the simulator
generates prediction accuracy, number of difficult-to-
predict branches, and other useful statistics.

For the second part in which we investigate the
present-day branch prediction schemes we extend the
space of exploration, performing trace-driven
simulation on a collection of 17 programs (having 1
million of dynamic branch instructions each) from
different versions of SPEC benchmarks [12]. We
simulate all of the SPEC CPU2000 integer
benchmarks, and all of the SPEC CPU95 integer
benchmarks that are not duplicated in SPEC
CPU2000. The benchmarks are compiled with the
CompaQ GEM compiler with the optimization flags -
fast -O4 -arch ev6 [2]. All these benchmarks cover a
lot of applications ranging from compression
(text/image) to word processing, from compilers and
architectures to games enhanced with artificial
intelligence, etc. We choose to simulate different
version of benchmarks (Stanford and SPEC) in order
to discover how these different testing programs
influence the neural branch predictors’ micro-
architectural features.

From a pedagogical point of view, the proposed tool
benefits the learning process because it helps students
to observe the influence of each parameter on
simulation model. The simulator provides a wider
variety of configuration options. Thus, it can be
determined how vary prediction accuracy with input
parameters (number of entries in prediction tables,
history length, number of bits for weights
representation, threshold value used for perceptron
training, etc). The ABPS simulator assures three of the
features specific to almost high-performance standard
simulators: free availability for use, extensibility and
portability. Full inheritance and polymorphism is
used, allowing for ease of extension in the future
adding new functionalities.

High prediction accuracy is vital especially in the case
of multiple instruction issue processors. It is important
for students to understand how to investigate
architectures that are optimized in terms of cost,
performance (prediction accuracy, execution rate), and
power consumption. Projects designed around ABPS
simulator are used in both undergraduate and graduate
level courses at Computer Architecture at “Lucian
Blaga” University of Sibiu to teach students concepts
related to unbiased branch, state of the art branch
predictors, branch prediction constraints and limits of
instruction level parallelism. Unfortunately, this
version of simulator uses only an analytical model to
determine the impact of unbiased branch and branch
missprediction on global processing performance [15].
In his model, related to a superscalar processor,
Vintan ignores stalls like cache misses and bus
conflicts focalizing only about the penalty introduced
by branch miss-prediction. In their assignments,
students are asked to explore architecture
configurations extending them for optimizing the
power, performance, or both within a given chip area
budget (based on other simulation tools – CACTI,
WATTCH [9, 1]).

3 The Functional Kernel of Simulator
The realized simulator must remove the bottlenecks
that limit the processor performance and search for
possible changes (architectural or optimization
techniques) for improving it. Providing a highly
parameterized model for every microarchitectural
instance, the performance obtained by simulation will
represent a quick feedback mechanism related to
proposed changes. The simulator execution consists in
the following sequential steps: 1) Configuring the
microarchitecture with the input parameters including
the benchmarks.
2) Initialization phase (prediction tables, local/global
history registers, etc.).
3) Starting the trace processing and computing the
simulation metrics.

3.1 Identifying unbiased branches

The majority of branches demonstrate a bias to either
the taken or the not-taken path which means branches
are highly polarized towards a specific prediction
context (a local prediction context, a global prediction
context or a path-based prediction context) and such
polarized branches are relatively easy-to-predict.
However, a minority of branches (6% to 24%,
depending on the used history length [14]) shows a
low degree of polarization since they tend to shuffle
between taken and not-taken and are therefore
unbiased and difficult-to-predict. The Detector kernel
of ABPS finds the unbiased branches (those that have
their polarization index – the percentage of “not
taken” or “taken” branch instances corresponding to a
certain context – lower than a polarization degree, set
prior the simulation) and quantifies their number.
Repeating the unbiased branches detection

methodology for a length-ordered set of contexts it
could be observed how decreases the number of
unbiased branches.

3.2 Branch prediction simulators

The prediction process supposes accessing the tables
for every instruction from traces and establishing the
prediction function of associated prediction automaton
or perceptron computed output. After branch’s
resolution, starts the updating algorithm (every good
prediction increase the automatons state or perceptron
weights, otherwise decreasing the same parameters).
The automatons are implemented as saturating
counters and, in the neural predictors’ case, the
threshold keeps from overtraining, permitting the
perceptron to adapt quickly at every changing
behavior.

4 The User Interface
From the user’s point of view it is very necessary a
visual friendly interface, based on menus, butons,
dialog boxes, graphical images. The simulator must be
easy to use and the results must be efficiently
interpreted and processed (eventually transferred to
some utility application such Excel, PowerPoint,
Internet). The machine model should be “fine-tuned”
to remove redundant or little hardware features and to
investigate possible tradeoffs of performance against
the functionality provided.

To run the ABPS simulator it must first install on host
computer the jre-1_5 (or higher) or jdk-1_5 (or higher)
for future development. ABPS is written in JAVA,
thus is platform independent. For properly use of
ABPS simulator it should be accomplished some
system requirements. Thus, it is recommended to have
a processor with at least 1 GHz frequency. Otherwise,
due to JVM (java virtual machine), the simulation
time, especially on SPEC2000 benchmarks, risk to
become prohibit. The RAM memory recommended is
256Mbytes. Since we can represent on the same chart
up to 17 benchmarks (even 6 bars on each), to have a
good view it is required a 1024x768 minimum screen
resolution.

The ABPS simulator is organized around a main
window that contains two panels. The left one is used
to configure (initialize all requested parameters) and
control simulation. The right panel is based on two
tabs – one that show every simulations’ results in
text format, and another, that permits to generate
graphical charts illustrating the influence of different
simulation parameters on metrics like unbiased
branches percentage, prediction accuracy, processing
rate. The left panel is divided in two parts: the upper
part contains the available testing programs. The
buttons Remove respectively Add facilitate to remove
the selected benchmark or to add new ones. The user
can opt to choose between Stanford or SPEC
benchmarks, single or multiple selections. Any
simulation started will operate exclusively on selected

benchmarks. Also, there are two very expressive
buttons that allow selecting or deselecting all
benchmarks. The lower part of left panel contains two
tabs Detector / Predictor, each having its own
configuring parameters. The inputs for Detector are:
the global history length – GH, the local history
length – LH, a flag that show if it is used path
information correlation (concatenated), and the
polarization degree of each context instance. The
Predictor tab contains at its own 4 tabs specific each
predictor implemented (GAg, PAg, PAp and
Perceptron). The two-level predictors implemented
(first 3) request as inputs parameters: number of
entries in prediction table, the history length (global /
local). Besides input parameters used by two-level
predictors, the neural predictors (Simple Perceptron
and Fast Path-based Perceptron) need some
additionals: threshold value used for learning
algorithm, number of bits for storing the weights.

Each predictor can predict all branches or only
unbiased branches. If the second choice is made the
simulator apply first the Detector phase, hidden for
user. After determining the unbiased branches
percentage it can be computed the performance loss
comparative with an equivalent multiple instruction
issue processor having an ideal branch predictor.

If the user chooses from Configuration panel the
Detector tab and in the Results panel only simple
execution (Simulate buton), among the simulation
results occurs a list of unbiased branches in their
certain contexts. This list could be saved (in text or csv
format) for further analysis between different unbiased
branches lists obtained when it is extended the
contexts length. An important result is the unbiased
branches percentage from the tested benchmarks. The
student can see how varies this percentage when the
context length changes. Figure 1 shows the simulation
results when Detector tab was selected.

Figure 1. ABPS simulator – unbiased branches detection

If the user selected from Configuration panel the
Predictors / Perceptron tab (Simple or Fast Path-
based) and in the Results panel only simple execution
(not charts generating), the simulation results consist
in four important metrics. The prediction accuracy is
the number of correct predictions divided to total
number of dynamic branches. We compute also a
confidence metric that represents the total cases when
the prediction was correct and the perceptron didn’t
need to be trained (the magnitude of perceptron output
was greater than threshold) divided to total number of
correct predictions (therefore, considering a trivial
threshold equal with 0). While the first two have
impact on processor’s performance, the next two
metrics have direct influence on transistors’ budget
and integration area (the number of perceptrons

used in prediction process and respectively the
saturation degree of perceptrons). The saturation
degree represents the percentage of cases when the
weights of perceptrons can’t be increased / decreased
because they are saturated. If the last two metrics are
quite low means that the perceptrons are underused.
The prediction accuracy and the usage degree of
prediction table are computed also in the case of two-
level predictors.

The Charts tab offers the possibility to illustrate
graphical simulation results. From the two listbox the
user can select which metrics (from those explained
earlier) is to be measured and which input parameter
varies on all selected benchmarks. An interesting chart
shows the Issue Rate (IR) relative speedup obtained

growing the context length. We used the formula
[IR(L)–IR(16)]/IR(16), for computing IR relative
speedup, where L is the context’s length, L? {20, 24,
28, 32}). The last group of columns represents the
average (or geometric / harmonic mean). The chart

type may be Bar or Line. The chart can be saved in
png format just clicking on SaveChart button. Figures
2 illustrates how varies prediction accuracy with
global history length when is used Fast Path-based
Perceptron predictor on all Stanford benchmarks.

Figure 2. ABPS simulator – variation of prediction accuracy with global history length

5 Acknowledgments
This work was supported in part by the Romanian
National University Research Council grants CNCSIS
71/2004. Also our gratitude to Dr. C. Egan from the
University of Hertfordshire, UK, for providing HSA
Stanford traces and for his encouragement related to
our Instruction Level Parallelism research.

6 Conclusions and Further Work
The classical approach in teaching branch prediction is
based largely on oral communication of professors
that spent a lot of time in computer architecture
research or, using paper and pencil to follow the
sequences of accesses in predictions tables, computing
different rules (e.g. perceptron) for prediction and
updating. Our approach represents a formative
necessity since computer architecture is mainly
approached in a descriptive manner. Through our
approach students have the opportunities to be creative
/ innovative in computer architecture or in other
fundamental research / didactical domains of
computer science and information technology, even in
countries not very developed from economical point
of view. Based on highly parameterized developed
simulation tools, students can understand more in
depth the theoretical concepts related to branch
prediction constraints, limits of instruction level

parallelism. It could be observed the different
benchmarks’ influence on every proposed
architectural innovation. With ABPS simulator we
identify unbiased branches. Repeating the detection
methodology for a length-ordered set of contexts it
could be observed how decreases the number of
unbiased branches from tested benchmarks. Another
facilitate of ABPS consist in running a plenty of
branch predictors, from classical two-level up to
neural state-of-the art, having the possibility of
varying the most important parameters and illustrating
simulations’ graphical results. Also important, our
simulator permits the migration of some mature actual
scientific problems to students’ understanding level.

For further work we are concerned to the necessity of
an efficient hardware branch predictor from power
consumption and performance criterions, within a
given chip area budget. Very high prediction accuracy
is necessary, because taking into account the multiple-
instruction-issue processors characteristics as pipeline
depth or issue rates, even a prediction miss rate of a
few percent involves a substantial performance loss.
Also, we intend to extend the ABPS simulator with
functional network characteristics, allowing a
distributed simulation process in a client-server
manner, useful due to the time consuming simulations.

7 References
[1] Brooks D., Tiwari V., Martonosi M., Wattch: a
framework for architectural-level power analysis and
optimizations. In Annual International Symposium on
Computer Architecture, pages 83–94, 2000.
[2] Cohn R., Lowney P. G., Design and Analysis of
Profile-Based Optimization in Compaq’s Compilation
Tools for Alpha, Journal of Instruction-Level
Parallelism nr 3, 2000, pg. 1— 25.
[3] Diefendorff K., K7 challenges Intel.
Microprocessor Report, 12(14), October, 1998.
[4] Jiménez D., Lin C., Neural Methods for Dynamic
Branch Prediction, ACM Transactions on Computer
Systems, Vol. 20, New York, USA, November 2002.
[5] Jiménez D., Fast Path-Based Neural Branch
Prediction, Proceedings of the 36th Annual
International Symposium on Microarchitecture,
December 2003.
[6] Lee J. K. F., Smith A. J., Branch prediction
strategies and branch target buffer design, IEEE
Computer Magazine, pp. 6-22, January 1984.
[7] Mudge T.N., et al., Limits of Branch prediction,
Technical Report, Electrical Engineering and
Computer Science Department, The University of
Michigan, Ann Arbor, Michigan, USA, 1996.
[8] Petit S., Tomás N., Sahuquillo J., Pont A., An
Execution-Driven Simulation Tool for Teaching Cache
Memories in Introductory Computer Organization
Courses, Workshop on Computer Architecture
Education, Boston, 2006.
[9] Shivakumar P., Jouppi N. P., CACTI 3.0: An
Integrated Cache Timing, Power, and Area Model,
WRL Technical Report 2001/2.
[10] Smullen C.W., Taha T.M., PSATSim: An
Interactive Graphical Superscalar Architecture

Simulator for Power and Performance Analysis,
Workshop on Computer Architecture Education,
Boston, 2006.
[11] Sprangle E., Carmean D. – Increasing
processor performance by implementing deeper
pipelines. In Proceedings of the 29th International
Symposium on Computer Architecture, Anchorage,
Alaska, May 25 - 29, 2002.
[12] SPEC2000, The SPEC benchmark programs,
http://www.spec.org.
[13] Steven G. B. et al - A Superscalar Architecture
to Exploit Instruction Level Parallelism, Proceedings
of the Euromicro Conference, 2-5 September, Prague,
1996.
[14] Vintan L., Gellert A., Florea A., Oancea M.,
Egan C., Understanding Prediction Limits through
Unbiased Branches, Lecture Notes in Computer
Science 4186 LNCS, pp. 480-487, 2006.
[15] Vintan L. Prediction Techniques in Advanced
Computing Architectures (in english), MatrixRom
Publishing House, Bucharest, ISBN 978-973-755-137-
5, 2007 (292 pg.)
[16] Yeh T., Patt Y., Alternative Implementations of
Two-Level Adaptive Branch Prediction, 19th Annual
International Symposium on Computer Architecture,
1992.
[17] Yi J.J., Lilja D.J., Simulation of Computer
Architectures: Simulators, Benchmarks,
Methodologies and Recommendations, IEEE
Transactions on Computers, Vol. 55, No. 3, March
2006, pp. 268-280.
[18] Pentium 4, Part I: the history, http://www.digit-
life.com/articles/pentium4/index.html

