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Abstract 

In modern superscalar microarchitectures that speculatively execute a great quantity of code, 
without performing branch prediction, it won’t be possible to aggressively exploit program’s 
instruction level parallelism. Both the architectural and technological complexity of current 
processors emphasizes the negative impact on performance due to every branch 
missprediction. Due to this importance, branch prediction becomes a core topic in Computer 
Architecture curricula. The fast development of computer science and information 
technology domains, and of computer architecture especially, have determined that 
many software tools used not far ago in research, to be enhanced with an interactive 
graphical interface and to be taught in Introductory Computer Organization respectively 
Computer Architecture courses. The lack of simulators dedicated to branch prediction used 
in didactical purposes despite of plenty used in research goals, represents the starting point of 
this paper. The main aim of this work consists in identifying the difficult-to-predict branches, 
quantifying them at benchmarks level and finding the relevant information to reduce their 
numbers. Finally, we evaluate the impact of these branches on three commonly used 
prediction context (local, global and path) and their corresponding predictors ranging from 
classical two-level predictors to present-day predictors (neural – Simple Perceptron and Fast 
Path-based Perceptron). The developed ABPS simulator provides a wide variety of 
configuration options. Beside statistics related to the number of difficult-to-predict branches, 
the simulator generates graphical results illustrating the influence of different simulation 
parameters (number of entries in prediction table, history length, etc.) on prediction accuracy, 
resources usage degree, etc., for every implemented predictor. 
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1 Introduction 
Since the simulation community – usually very broad 
– is not necessarily familiar with branch prediction 
problem, we present a short introduction of this 
domain. The computers have made important 
progresses and microprocessors (CPUs) are the main 
responsible for this. Thus, it is a stringent necessity 
to improve the current computer architecture 
performances both quantitative and qualitative 
viewpoint. The technological trends refers to 
increasing integration degree of transistors on chip, 
increasing the processors frequency, reducing the 
main memory access time, reducing the hardware 
implementation cost at same power consumption or 
same memory size, etc. The architectural tendencies 
pursuit exploiting and increasing instruction level 
parallelism both through static and dynamic 
techniques, in order to overcome the control-flow and 
data-flow bottleneck. Both the architectural complexity 
of current processors (deep pipeline structures – 20 at 
INTEL Pentium4 and wide width instructions issue) and 
technological complexity (higher processing frequency – 
greater than 3.3 GHz at same processor) emphasizing the 
negative impact on performance due to every branch 
missprediction [11]. Branch instructions activate at 
control-flow level generating performance loss by 
unknowing in the instruction fetch stage the direction 
and the target of branch. Thus, the modern 
architectures should incorporate very efficacious 
prediction schemes. 

One of the first approaches in hardware branch 
prediction consists in Branch Target Buffer (BTB) 
structures [6]. BTB is a small, associative memory, 
integrated on chip that retains the addresses of 
recently executed branches, their targets and 
optionally other information (e.g. target opcode). Due 
to some intrinsic limitations, BTB's accuracies are 
limited on some benchmarks having unpropitious 
characteristics (e.g. correlated branches). Among first 
commercial processors that implement BTB structures 
are Intel Pentium [18], AMD K5 and DEC Alpha 
21064. 

In order to improve BTB's efficiency, Yeh and Patt 
(1992) generalized it through a new approach called 
Two Level Adaptive Branch Prediction. According to 
[16], the Two Level Adaptive Branch Prediction uses 
two distinct levels of branch history information to 
make predictions. The first level consists in the 
History Register (HR) that contains the last k branches 
encountered (taken / not taken) or the last k 
occurrences of the same branch instruction. The 
second level consists in the branch behavior of the last 
occurrences of the specific pattern of these branches. 
A Pattern History Table (PHT) that contains 
essentially the branch prediction automaton (usually 2 
- bit saturating counters) implements it. HR shifts left 
with a binary position when updated according to the 
actual branch behavior (taken=1/ not taken=0). There 

is a corresponding entry in the PHT for each of the 2k 
HR's patterns. Intel Pentium Pro, Pentium II [18] and 
AMD K7 [3] are examples of processors that 
incorporate a two-level predictor. 

In order to obtain a greater prediction accuracy the 
nowadays processors use hybrid prediction structures, 
combining two (or more) tables, one correlated with 
local history of the predicted branch (PAg predictor) 
and other correlated with global history of the 
predicted branch (GAg predictor). The selection 
between two predictions is made using a confidence 
table that records the dynamic behavior of each 
predictor. The processor Alpha 21264 embeds a 
hybrid predictor having a local predictor with 1024 
entries (keeping a local history of 10 bits) and a global 
predictor with 4096 entries reaching to almost 95% of 
prediction accuracy [4]. 

The most accurate single-component branch predictors 
in the literature are neural branch predictors [4, 5]. 
Their main advantages consist in possibility of using 
longer correlation information at linear cost. The 
Perceptron predictor – the simplest neural branch 
predictor – keeps a table of weights vectors (small 
integers that are learned through the perceptron 
learning rule) [4]. As in global two-level adaptive 
branch prediction, a shift register records a global 
history of outcomes of conditional branches, recording 
true for taken, or false for not taken. To predict a 
branch outcome, a weights vector is selected by 
indexing the table with the branch address modulo the 
number of weights vectors. The dot product of the 
selected vector and the global history register is 
computed, where true in the history represents 1 and 
false represents -1. If the dot product is at least 0, then 
the branch is predicted taken, otherwise it is predicted 
not taken. Once the perceptron output has been 
computed, the training algorithm starts: it increments 
the i-th correlation weight when the branch outcome 
agrees with the i-th bit from global branch history 
shift register and decrements the weight otherwise. 
Unfortunately, the high latency of the perceptron 
predictor and impossibility to predict the linearly 
inseparable branches makes it impractical yet for 
hardware implementation. In order to reduce the 
prediction latency, the Fast Path-based Perceptron [5] 
chooses its weights for generating a prediction 
according to the current branch’s path, rather than 
according to the branch’s PC and history register. The 
prediction latency is hided due to the speculative 
calculation of the perceptron’s output. However, Intel 
includes the perceptron predictor in one of its IA-64 
simulators for researching future microarchitectures 
[4]. 

Vintan et al. proved that a branch in a certain dynamic 
context is difficult predictable if it is unbiased and the 
outcomes are shuffled [14]. In other words, a dynamic 
branch instruction is unpredictable with a given 
prediction information if it is unbiased in the 
considered dynamic context and the behavior in that 



certain context cannot be modeled through Markov 
stochastic processes of any order. Based on Vintan’s 
methodology, in this paper we identify unbiased 
branches by repeating various and different length 
prediction contexts. We show how it is reduced the 
frequency of unbiased when extend the length of 
context information. Also, we determine the impact of 
unbiased branch on prediction accuracy and 
processing performance. 

2 Simulation Methodology. Benchmarks 
After more than two decades, the researcher from 
computer science domain got the conclusion that 
simulators have become an integral part of the 
computer architecture research and design process 
[17]. Their most important advantages, comparing 
with real processors, are low implementation cost, 
development time, flexibility and extensibility 
allowing the architects to quickly evaluate the 
performance of a wide range of architectures and to 
quantify the efficacy of every enhancement. Besides 
its importance proved in computer architecture 
research field, in the latest time, simulators have been 
extensively employed as a valuable pedagogical tool 
as they enable students to visualize how 
microarchitecture components work and interacts each 
other. For example, at last important Workshop on 
Computer Architecture Education held in conjunction 
with the 33rd International Symposium on Computer 
Architecture (ISCA06 – the best conference in 
computer architecture domain in the world), two 
papers aim at fundamental topics of computer 
architecture curricula: processor – cache interface in a 
RISC architecture (MIPS) [8] and power and 
performance analysis in superscalar out-of-order 
architecture [10]. 

In this work we implement the ABPS (Advanced 
Branch Prediction Simulator), an interactive graphical 
trace-driven simulator for teaching branch prediction. 
The ABPS simulator is currently used in 
undergraduate and graduate courses / laboratories in 
(Advanced) Computer Architecture at “Lucian Blaga” 
University of Sibiu. The simulator code is open source 
and can be found at 
http://webspace.ulbsibiu.ro/adrian.florea/html/simulat
oare/simulatoare.htm. 

Related to first part of our investigation – identifying 
the difficult-to-predict branches and quantifying them 
on testing programs, we used the traces obtained 
based on the eight C Stanford integer benchmarks, 
designed by Professor John Hennessy (Stanford 
University), to be computationally intensive and 
representative of non - numeric code while at the same 
time being compact. All these benchmarks were 
compiled by the HSA gnu C compiler, which targets 
the HSA (Hatfield Superscalar Architecture) 
instruction set. A dedicated HSA simulator [13] that 
generates the corresponding traces simulated the 
resulted HSA object code. These helpful tools were 

developed at the University of Hertfordshire, Research 
Group of Computer Architecture, UK. The average 
instruction number is about 273.000 and the average 
percentage of total instructions that are branches is 
about 18%, with about 76% of them being taken. 
Derived from HSA traces, special traces were 
obtained, containing exclusively all the processed 
branches. Each branch belonging to these modified 
HSA traces is stored in the following format: branch's 
type, the address of the branch (PC – program 
counter) and its target address. Some of these 
benchmarks are well known as very difficult to be 
predicted. For example, as Mudge et al. proved very 
clearly [7], 75% accuracy could be an ultimate limit 
on "quick-sort" benchmark. 

Following our aims, we developed an original 
dedicated trace-driven simulator that uses the above-
mentioned traces. The most important input 
parameters for this simulator are the local/global 
history length (HRl bits (l) / HRg bits (k)), number of 
entries in prediction table, the type of predictor, the 
simulated benchmark. As outputs, the simulator 
generates prediction accuracy, number of difficult-to-
predict branches, and other useful statistics. 

For the second part in which we investigate the 
present-day branch prediction schemes we extend the 
space of exploration, performing trace-driven 
simulation on a collection of 17 programs (having 1 
million of dynamic branch instructions each) from 
different versions of SPEC benchmarks [12]. We 
simulate all of the SPEC CPU2000 integer 
benchmarks, and all of the SPEC CPU95 integer 
benchmarks that are not duplicated in SPEC 
CPU2000. The benchmarks are compiled with the 
CompaQ GEM compiler with the optimization flags -
fast -O4 -arch ev6 [2]. All these benchmarks cover a 
lot of applications ranging from compression 
(text/image) to word processing, from compilers and 
architectures to games enhanced with artificial 
intelligence, etc. We choose to simulate different 
version of benchmarks (Stanford and SPEC) in order 
to discover how these different testing programs 
influence the neural branch predictors’ micro-
architectural features. 

From a pedagogical point of view, the proposed tool 
benefits the learning process because it helps students 
to observe the influence of each parameter on 
simulation model. The simulator provides a wider 
variety of configuration options. Thus, it can be 
determined how vary prediction accuracy with input 
parameters (number of entries in prediction tables, 
history length, number of bits for weights 
representation, threshold value used for perceptron 
training, etc). The ABPS simulator assures three of the 
features specific to almost high-performance standard 
simulators: free availability for use, extensibility and 
portability. Full inheritance and polymorphism is 
used, allowing for ease of extension in the future 
adding new functionalities. 



High prediction accuracy is vital especially in the case 
of multiple instruction issue processors. It is important 
for students to understand how to investigate 
architectures that are optimized in terms of cost, 
performance (prediction accuracy, execution rate), and 
power consumption. Projects designed around ABPS 
simulator are used in both undergraduate and graduate 
level courses at Computer Architecture at “Lucian 
Blaga” University of Sibiu to teach students concepts 
related to unbiased branch, state of the art branch 
predictors, branch prediction constraints and limits of 
instruction level parallelism. Unfortunately, this 
version of simulator uses only an analytical model to 
determine the impact of unbiased branch and branch 
missprediction on global processing performance [15]. 
In his model, related to a superscalar processor, 
Vintan ignores stalls like cache misses and bus 
conflicts focalizing only about the penalty introduced 
by branch miss-prediction. In their assignments, 
students are asked to explore architecture 
configurations extending them for optimizing the 
power, performance, or both within a given chip area 
budget (based on other simulation tools – CACTI, 
WATTCH [9, 1]). 

3 The Functional Kernel of Simulator 
The realized simulator must remove the bottlenecks 
that limit the processor performance and search for 
possible changes (architectural or optimization 
techniques) for improving it. Providing a highly 
parameterized model for every microarchitectural 
instance, the performance obtained by simulation will 
represent a quick feedback mechanism related to 
proposed changes. The simulator execution consists in 
the following sequential steps: 1) Configuring the 
microarchitecture with the input parameters including 
the benchmarks. 
2) Initialization phase (prediction tables, local/global 
history registers, etc.). 
3) Starting the trace processing and computing the 
simulation metrics. 

3.1 Identifying unbiased branches 

The majority of branches demonstrate a bias to either 
the taken or the not-taken path which means branches 
are highly polarized towards a specific prediction 
context (a local prediction context, a global prediction 
context or a path-based prediction context) and such 
polarized branches are relatively easy-to-predict. 
However, a minority of branches (6% to 24%, 
depending on the used history length [14]) shows a 
low degree of polarization since they tend to shuffle 
between taken and not-taken and are therefore 
unbiased and difficult-to-predict. The Detector kernel 
of ABPS finds the unbiased branches (those that have 
their polarization index – the percentage of “not 
taken” or “taken” branch instances corresponding to a 
certain context – lower than a polarization degree, set 
prior the simulation) and quantifies their number. 
Repeating the unbiased branches detection 

methodology for a length-ordered set of contexts it 
could be observed how decreases the number of 
unbiased branches. 

3.2 Branch prediction simulators 

The prediction process supposes accessing the tables 
for every instruction from traces and establishing the 
prediction function of associated prediction automaton 
or perceptron computed output. After branch’s 
resolution, starts the updating algorithm (every good 
prediction increase the automatons state or perceptron 
weights, otherwise decreasing the same parameters). 
The automatons are implemented as saturating 
counters and, in the neural predictors’ case, the 
threshold keeps from overtraining, permitting the 
perceptron to adapt quickly at every changing 
behavior. 

4 The User Interface 
From the user’s point of view it is very necessary a 
visual friendly interface, based on menus, butons, 
dialog boxes, graphical images. The simulator must be 
easy to use and the results must be efficiently 
interpreted and processed (eventually transferred to 
some utility application such Excel, PowerPoint, 
Internet). The machine model should be “fine-tuned” 
to remove redundant or little hardware features and to 
investigate possible tradeoffs of performance against 
the functionality provided. 

To run the ABPS simulator it must first install on host 
computer the jre-1_5 (or higher) or jdk-1_5 (or higher) 
for future development. ABPS is written in JAVA, 
thus is platform independent. For properly use of 
ABPS simulator it should be accomplished some 
system requirements. Thus, it is recommended to have 
a processor with at least 1 GHz frequency. Otherwise, 
due to JVM (java virtual machine), the simulation 
time, especially on SPEC2000 benchmarks, risk to 
become prohibit. The RAM memory recommended is 
256Mbytes. Since we can represent on the same chart 
up to 17 benchmarks (even 6 bars on each), to have a 
good view it is required a 1024x768 minimum screen 
resolution. 

The ABPS simulator is organized around a main 
window that contains two panels. The left one is used 
to configure (initialize all requested parameters) and 
control simulation. The right panel is based on two 
tabs – one that show every simulations’ results in 
text format, and another, that permits to generate 
graphical charts illustrating the influence of different 
simulation parameters on metrics like unbiased 
branches percentage, prediction accuracy, processing 
rate. The left panel is divided in two parts: the upper 
part contains the available testing programs. The 
buttons Remove respectively Add facilitate to remove 
the selected benchmark or to add new ones. The user 
can opt to choose between Stanford or SPEC 
benchmarks, single or multiple selections. Any 
simulation started will operate exclusively on selected 



benchmarks. Also, there are two very expressive 
buttons that allow selecting or deselecting all 
benchmarks. The lower part of left panel contains two 
tabs Detector / Predictor, each having its own 
configuring parameters. The inputs for Detector are: 
the global history length – GH, the local history 
length – LH, a flag that show if it is used path 
information correlation (concatenated), and the 
polarization degree of each context instance. The 
Predictor tab contains at its own 4 tabs specific each 
predictor implemented (GAg, PAg, PAp and 
Perceptron). The two-level predictors implemented 
(first 3) request as inputs parameters: number of 
entries in prediction table, the history length (global / 
local). Besides input parameters used by two-level 
predictors, the neural predictors (Simple Perceptron 
and Fast Path-based Perceptron) need some 
additionals: threshold value used for learning 
algorithm, number of bits for storing the weights. 

Each predictor can predict all branches or only 
unbiased branches. If the second choice is made the 
simulator apply first the Detector phase, hidden for 
user. After determining the unbiased branches 
percentage it can be computed the performance loss 
comparative with an equivalent multiple instruction 
issue processor having an ideal branch predictor. 

If the user chooses from Configuration panel the 
Detector tab and in the Results panel only simple 
execution (Simulate buton), among the simulation 
results occurs a list of unbiased branches in their 
certain contexts. This list could be saved (in text or csv 
format) for further analysis between different unbiased 
branches lists obtained when it is extended the 
contexts length. An important result is the unbiased 
branches percentage from the tested benchmarks. The 
student can see how varies this percentage when the 
context length changes. Figure 1 shows the simulation 
results when Detector tab was selected. 

 
Figure 1. ABPS simulator – unbiased branches detection 

If the user selected from Configuration panel the 
Predictors / Perceptron tab (Simple or Fast Path-
based) and in the Results panel only simple execution 
(not charts generating), the simulation results consist 
in four important metrics. The prediction accuracy is 
the number of correct predictions divided to total 
number of dynamic branches. We compute also a 
confidence metric that represents the total cases when 
the prediction was correct and the perceptron didn’t 
need to be trained (the magnitude of perceptron output 
was greater than threshold) divided to total number of 
correct predictions (therefore, considering a trivial 
threshold equal with 0). While the first two have 
impact on processor’s performance, the next two 
metrics have direct influence on transistors’ budget 
and integration area (the number of perceptrons 

used in prediction process and respectively the 
saturation degree of perceptrons). The saturation 
degree represents the percentage of cases when the 
weights of perceptrons can’t be increased / decreased 
because they are saturated. If the last two metrics are 
quite low means that the perceptrons are underused. 
The prediction accuracy and the usage degree of 
prediction table are computed also in the case of two-
level predictors. 

The Charts tab offers the possibility to illustrate 
graphical simulation results. From the two listbox the 
user can select which metrics (from those explained 
earlier) is to be measured and which input parameter 
varies on all selected benchmarks. An interesting chart 
shows the Issue Rate (IR) relative speedup obtained 



growing the context length. We used the formula 
[IR(L)–IR(16)]/IR(16), for computing IR relative 
speedup, where L is the context’s length, L? {20, 24, 
28, 32}). The last group of columns represents the 
average (or geometric / harmonic mean). The chart 

type may be Bar or Line. The chart can be saved in 
png format just clicking on SaveChart button. Figures 
2 illustrates how varies prediction accuracy with 
global history length when is used Fast Path-based 
Perceptron predictor on all Stanford benchmarks. 

 

 
Figure 2. ABPS simulator – variation of prediction accuracy with global history length 
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6 Conclusions and Further Work 
The classical approach in teaching branch prediction is 
based largely on oral communication of professors 
that spent a lot of time in computer architecture 
research or, using paper and pencil to follow the 
sequences of accesses in predictions tables, computing 
different rules (e.g. perceptron) for prediction and 
updating. Our approach represents a formative 
necessity since computer architecture is mainly 
approached in a descriptive manner. Through our 
approach students have the opportunities to be creative 
/ innovative in computer architecture or in other 
fundamental research / didactical domains of 
computer science and information technology, even in 
countries not very developed from economical point 
of view. Based on highly parameterized developed 
simulation tools, students can understand more in 
depth the theoretical concepts related to branch 
prediction constraints, limits of instruction level 

parallelism. It could be observed the different 
benchmarks’ influence on every proposed 
architectural innovation. With ABPS simulator we 
identify unbiased branches. Repeating the detection 
methodology for a length-ordered set of contexts it 
could be observed how decreases the number of 
unbiased branches from tested benchmarks. Another 
facilitate of ABPS consist in running a plenty of 
branch predictors, from classical two-level up to 
neural state-of-the art, having the possibility of 
varying the most important parameters and illustrating 
simulations’ graphical results. Also important, our 
simulator permits the migration of some mature actual 
scientific problems to students’ understanding level. 

For further work we are concerned to the necessity of 
an efficient hardware branch predictor from power 
consumption and performance criterions, within a 
given chip area budget. Very high prediction accuracy 
is necessary, because taking into account the multiple-
instruction-issue processors characteristics as pipeline 
depth or issue rates, even a prediction miss rate of a 
few percent involves a substantial performance loss. 
Also, we intend to extend the ABPS simulator with 
functional network characteristics, allowing a 
distributed simulation process in a client-server 
manner, useful due to the time consuming simulations. 
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